Incremental probabilistic Latent Semantic Analysis for video retrieval
نویسندگان
چکیده
منابع مشابه
Incremental probabilistic Latent Semantic Analysis for video retrieval
a r t i c l e i n f o Recent research trends in Content-based Video Retrieval have shown topic models as an effective tool to deal with the semantic gap challenge. In this scenario, this paper has a dual target: (1) it is aimed at studying how the use of different topic models (pLSA, LDA and FSTM) affects video retrieval performance; (2) a novel incre-mental topic model (IpLSA) is presented in ...
متن کاملStructurally Enhanced Latent Semantic Analysis for Video Object Retrieval
The work presented in this paper aims at reducing the semantic gap between low level video features and semantic video contents. The proposed method for finding associations between segmented frame region characteristics relies on the strength of Latent Semantic Analysis (LSA). Our previous experiments [1], using color histograms and Gabor features, have rapidly shown the potential of this appr...
متن کاملProbabilistic Latent Semantic Analysis
Probabilistic Latent Semantic Analysis is a novel statistical technique for the analysis of two{mode and co-occurrence data, which has applications in information retrieval and ltering, natural language processing, machine learning from text, and in related areas. Compared to standard Latent Semantic Analysis which stems from linear algebra and performs a Singular Value Decomposition of co-occu...
متن کاملProbabilistic Latent Semantic Analysis
Probabilistic Latent Semantic Analysis (pLSA) is a technique from the category of topic models. Its main goal is to model cooccurrence information under a probabilistic framework in order to discover the underlying semantic structure of the data. It was developed in 1999 by Th. Hofmann [7] and it was initially used for text-based applications (such as indexing, retrieval, clustering); however i...
متن کاملA probabilistic framework for semantic video indexing, filtering, and retrieval
Semantic filtering and retrieval of multimedia content is crucial for efficient use of the multimedia data repositories. Video query by semantic keywords is one of the most difficult problems in multimedia data retrieval. The difficulty lies in the mapping between low-level video representation and high-level semantics. We therefore formulate the multimedia content access problem as a multimedi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Image and Vision Computing
سال: 2015
ISSN: 0262-8856
DOI: 10.1016/j.imavis.2015.02.003